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Nearly pure anothosite outcrops occur globally
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The anorthositicnature of the FHT was first
postulatedon the basis of ferroan
anorthosites foundinthe Apollo samples
suite.

This GMO scenario assumes that the Moon
was once mostly or completely molten and
that the primarylunar crust formed from

floatation of cumulates as the melt cooled.

Recently, spectral reflectance
measurements have identified signatures of
nearly pure anorthosite (PAN) across the
lunar surface but primarily in the FHT.

The association between PAN and material
within and excavated by impact basins has
led to the hypothesisthata subsurface layer
of nearly pure plagioclase exists tens of
kilometers beneath the lunar surface.




Hertzsprung basin

* Hertzsprung is a well-preserved impact basin
on the Moon’sfarside at 2°N, 128°W.

* It containstwo clear rings, the main rim of
570 km diameter and an innerring of 270
km diameter.

 From the crater’s morphologyitis estimated
that the impact excavated material from the
top half of the 80 km thick crust.
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PAN outcrops atHertzsprung basin
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How can image reconstruction help?

Data = Image ** PSF + Noise




How can image reconstruction help?

Data = Image ** PSF + Noise

Pixon Reconstruction:
* |mprove spatial resolution and suppress noise.
« Bayesian image reconstruction technique that aims to
find the simplest image consistent with data.
* Minimize statistic based on the autocorrelation of the
residuals to avoid spurious features.
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Science Goals addressed by Hertzsprung PAN

characterization
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1. Determine the composition of the
lower crust and bulk Moon (3c).

2. Determinethe extent and
composition of the primary
feldspathic crust (3a).
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Nearby Orientale ejecta and impact melts
orovide an incentive
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Conclusions

* LP thermal neutron along =

with Selene spectral profiler, 15°N
Clementine FeO and albedo Do
data imply that a large (100

km) easily accessible region
of PAN lies within 0N s
Hertzsprung basin. o
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